LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient n-Type Small-Molecule Mixed Ion-Electron Conductors and Application in Hydrogen Peroxide Sensors.

Photo from wikipedia

Small-molecule semiconductors used as the channel of organic electrochemical transistors (OECTs) have been rarely reported despite their inherent advantages of well-defined molecular weight, convenient scale-up synthesis, and good performance reproducibility.… Click to show full abstract

Small-molecule semiconductors used as the channel of organic electrochemical transistors (OECTs) have been rarely reported despite their inherent advantages of well-defined molecular weight, convenient scale-up synthesis, and good performance reproducibility. Herein, three small molecules based on perylene diimides are readily prepared for n-type OECTs. The final molecules show preferred energy levels, tunable backbone conformation, and high film crystallinity, rendering them good n-type dopability, favorable volumetric capacities, and substantial electron mobilities. Consequently, the OECTs afford a record-low threshold voltage of 0.05 V and a normalized peak transconductance of 4.52 × 10-2 S cm-1, as well as impressive long-term cycling stability. Significantly, the OECTs utilized for hydrogen peroxide sensing are further demonstrated with a detection limit of 0.75 μM. This work opens the possibility of developing nonfullerene small molecules as superior n-type OECT materials and provides important insights for designing high-performance small-molecule mixed ion-electron conductors for OECTs and (bio)sensors.

Keywords: hydrogen peroxide; small molecule; molecule; electron; mixed ion; molecule mixed

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.