LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Activating Surface Lattice Oxygen of a Cu/Zn1-xCuxO Catalyst through Interface Interactions for CO Oxidation.

Photo from wikipedia

Surface lattice oxygen in metal oxides is a common participant in many chemical reactions. Given this, the structural design of catalysts to activate lattice oxygen and moreover investigations into the… Click to show full abstract

Surface lattice oxygen in metal oxides is a common participant in many chemical reactions. Given this, the structural design of catalysts to activate lattice oxygen and moreover investigations into the effect of lattice oxygen on reaction pathways are hot topics. With this in mind, herein we prepare CuO-Zn1-xCuxO (ZCO) nanofibers akin to the Trojan horse legend and via an in situ reduction obtain activated Cu/Zn1-xCuxO (Cu/ZCO) nanofibers. X-ray absorption spectroscopy and X-ray photoelectron spectroscopy reveal that surface lattice oxygen of Cu/ZCO is effectively activated from inert O2- to reactive O2-x. This activation stems from the enhanced covalence of metal-oxygen bonds and the electron transfer between Cu and the support. Online mass spectrometry reveals that Cu/ZCO with activated lattice oxygen exhibits a higher Mars-van Krevelen reaction efficiency during the CO oxidation process. This study offers a new avenue to engineer interface interactions, given, as highlighted here, the importance of surface lattice oxygen in oxide supports during the catalytic process.

Keywords: lattice oxygen; spectroscopy; surface lattice; oxygen

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.