LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optically Transparent Broadband Microwave Absorber by Graphene and Metallic Rings.

Photo from wikipedia

The demand for optically transparent microwave absorbers has attracted increasing interest among researchers in recent years. However, integrating broadband microwave absorption and high optical transparency remains a challenge. This report… Click to show full abstract

The demand for optically transparent microwave absorbers has attracted increasing interest among researchers in recent years. However, integrating broadband microwave absorption and high optical transparency remains a challenge. This report demonstrates a scheme for broadband microwave absorbers, featuring a 90% absorption bandwidth of 10 GHz covering a frequency range of 25.2-35.2 GHz and high compatibility with good optical transparency in a wide band from the visible to infrared. The absorber is based on a Jaumann structure composed of two graphene sheets sandwiched by dielectric and backed by an arrayed-metallic-rings sheet. Guided by derived formulas, this absorber exhibits complete absorption if the sheet resistance of graphene is close to 500 Ω sq-1. The bandwidth and center frequency of the absorption spectra can be readily tuned simply via changes in the thickness of the dielectric between the graphene films and arrayed-metallic-rings sheet. Moreover, the absorber is insensitive to the incident angle of radiation and can achieve broadband and near-unity absorption even at oblique incidence. The graphene-based absorber proposed herein provides a viable solution for effectively integrating broadband and near-unity microwave absorption with high optical transparency, thereby enabling widespread applications in optics, communications, and solar cells.

Keywords: broadband; broadband microwave; optically transparent; optical transparency; absorption; metallic rings

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.