LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sliding Modulation in Nonlinear Optical Effect in Two-Dimensional van der Waals Cu2MoS4.

Photo from wikipedia

Owing to different nonlinear optical (NLO) motifs with diverse structural and symmetrical assemblies, two-dimensional (2D) van der Waals (vdW) transition metal ternary chalcogenides (TMTCs) have unique advantages in nano-NLO modulation… Click to show full abstract

Owing to different nonlinear optical (NLO) motifs with diverse structural and symmetrical assemblies, two-dimensional (2D) van der Waals (vdW) transition metal ternary chalcogenides (TMTCs) have unique advantages in nano-NLO modulation compared to 2D vdW transition metal dichalcogenides (e.g., MoS2). Based on first-principles calculations, in this study, we discover that layered Cu2MoS4 with two tetrahedral [MoS4] and [CuS4] motifs, as a representative 2D vdW TMTC, has an extremely rare sliding-modulated second harmonic effect with nearly 70% fluctuation, much larger than 5% in MoS2 with a single octahedral [MoS6] motif because of different synergistic effects among intra- and interlayer NLO polarizations induced by the [CuS4] and [MoS4] NLO-active motifs. Furthermore, the Cu2MoS4 layers exhibit a low energy barrier in interlayer sliding with a robust SHG response against large strains, displaying a novel and applicable NLO-modulation mechanism in nano-optoelectronics.

Keywords: nonlinear optical; der waals; modulation; van der; two dimensional; dimensional van

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.