LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Giant Thermopower of Hydrogen Ion Enhanced by a Strong Hydrogen Bond System.

Photo from wikipedia

Ionic thermoelectric materials based on organic polymers are of great significance for low-grade heat harvesting and self-powered wearable temperature sensing. Here, we demonstrate a poly(vinyl alcohol) (PVA) hydrogel that relies… Click to show full abstract

Ionic thermoelectric materials based on organic polymers are of great significance for low-grade heat harvesting and self-powered wearable temperature sensing. Here, we demonstrate a poly(vinyl alcohol) (PVA) hydrogel that relies on the differential transport of H+ in PVA hydrogels with different degrees of crystallization. After the inorganic acid is infiltrated into the physically cross-linked PVA hydrogel, the ionic conductor exhibits a huge ionic thermopower of 38.20 mV K-1, which is more than twice the highest value reported for hydrogen ion transport thermoelectric materials. We attribute the enhanced thermally generated voltage to the movement of H+ in the strong hydrogen bond system of PVA hydrogels and the restrictive effect of the strong hydrogen bond system on anions. This ionic thermoelectric hydrogel opens up a new way for thermoelectric conversion devices using H+ as an energy carrier.

Keywords: hydrogen; strong hydrogen; bond system; hydrogen bond

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.