LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Reliable Flexible Device with a Charge Compensation Layer

Photo from wikipedia

Flexible devices fabricated with a polyimide (PI) substrate are essential for foldable, rollable, and stretchable products and various applications. However, inherent technical challenges remain in mobile charge-induced device instabilities and… Click to show full abstract

Flexible devices fabricated with a polyimide (PI) substrate are essential for foldable, rollable, and stretchable products and various applications. However, inherent technical challenges remain in mobile charge-induced device instabilities and image retention, significantly hindering future technologies. Here, we introduce a new barrier material, SiCOH, into the backplane of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) and applied it to production-level flexible panels. We found that the SiCOH layer effectively compensates for the surface charging induced by fluorine ions at the interface between the PI substrate and the barrier layer under bias stress, thereby preventing abnormal positive shifts in threshold voltage (Vth) and image disturbance. The a-IGZO TFTs and metal–insulator–metal and metal–insulator–semiconductor capacitors with a SiCOH layer demonstrate reliable device performance, Vth shifts, and capacitance changes with an increase in gate bias stress. A flexible device with SiCOH enables the suppression of abnormal Vth shifts associated with PIs and plays a vital role in image sticking. This work provides new insights into process integrity and paves the way for expediting versatile form factors.

Keywords: reliable flexible; layer; charge; flexible device; device; highly reliable

Journal Title: ACS Applied Materials & Interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.