LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Li-Ion Transport and Solvation of a Li Salt of Weakly Coordinating Polyanions in Ethylene Carbonate/Dimethyl Carbonate Mixtures.

Photo from wikipedia

Electrolytes with a high Li-ion transference number (tLi) have attracted significant attention for the improvement of the rapid charge-discharge performance of Li-ion batteries (LIBs). Nonaqueous polyelectrolyte solutions exhibit high tLi… Click to show full abstract

Electrolytes with a high Li-ion transference number (tLi) have attracted significant attention for the improvement of the rapid charge-discharge performance of Li-ion batteries (LIBs). Nonaqueous polyelectrolyte solutions exhibit high tLi upon immobilization of the anion on a polymer backbone. However, the transport properties and Li-ion solvation in these media are not fully understood. Here, we investigated the Li salt of a weakly coordinating polyanion, poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)amide] (poly(LiSTFSA)), in various ethylene carbonate and dimethyl carbonate mixtures. The highest ionic conductivity was unexpectedly observed for the lowest polar mixture at the highest salt concentration despite the low dissociation degree of poly(LiSTFSA). This was attributed to a unique conduction phenomenon resulting from the faster diffusion of transiently solvated Li ions along the interconnected aggregates of polyanion chains. A Li/LiFePO4 cell using such an electrolyte demonstrated improved rate capability. These results provide insights into a design strategy of nonaqueous liquid electrolytes for LIBs.

Keywords: ethylene carbonate; dimethyl carbonate; carbonate dimethyl; salt weakly; carbonate; weakly coordinating

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.