LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Charge Reversal Polypyrrole Nanocomplex-Mediated Gene Delivery and Photothermal Therapy for Effectively Treating Papillary Thyroid Cancer and Inhibiting Lymphatic Metastasis.

Photo from wikipedia

As a traditional treatment for papillary thyroid cancer (PTC), surgical resection of diseased tissues often brings lots of inconveniences to patients, and the tumor recurrence and metastasis are difficult to… Click to show full abstract

As a traditional treatment for papillary thyroid cancer (PTC), surgical resection of diseased tissues often brings lots of inconveniences to patients, and the tumor recurrence and metastasis are difficult to avoid. Herein, we developed a gene and photothermal combined therapy nanosystem based on a polypyrrole (Ppy)-poly(ethylene imine)-siILK nanocomplex (PPRILK) to achieve minimally invasive ablation and lymphatic metastasis inhibition in PTC simultaneously. In this system, gelatin-stabilized Ppy mainly acted as a photothermal- and photoacoustic (PA)-responsive nanomaterial and contributed to its well-behaved photosensitivity in the near-infrared region. Moreover, gelatin-stabilized Ppy possessed a charge reversal function, facilitating the tight conjunction of siILK gene at physiological pH (7.35-7.45) and its automatic release into acidic lysosomes (pH 4.0-5.5); the proton sponge effect generated during this process further facilitated the escape of siILK from lysosomes to the cytoplasm and played its role in inhibiting PTC proliferation and lymphatic metastasis. With the guidance of fluorescence and PA bimodal imaging, gene delivery and Ppy location in tumor regions could be clearly observed. As a result, tumors were completely eradicated by photothermal therapy, and the recurrences and metastases were obviously restrained by siILK.

Keywords: lymphatic metastasis; therapy; metastasis; gene; thyroid cancer; papillary thyroid

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.