LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polynitro-Functionalized Azopyrazole with High Performance and Low Sensitivity as Novel Energetic Materials.

The development of energetic materials is still facing a huge challenge because the relationship between energy and sensitivity is usually contradictory: high energy is always accompanied with low sensitivity. Here,… Click to show full abstract

The development of energetic materials is still facing a huge challenge because the relationship between energy and sensitivity is usually contradictory: high energy is always accompanied with low sensitivity. Here, a high-energy, low-sensitivity energetic polynitro-functionalized azopyrazole (TNAP) and its energetic salts have been synthesized. The structural characterization of these compounds was analyzed by elemental analysis, 1H and 13C NMR spectroscopies, and infrared spectroscopy. The single-crystal structure of compounds K2TNAP, TNAP, 5, and 6 was obtained by X-ray diffraction, and K2TNAP is a novel energetic metal-organic framework. The calculated detonation properties of TNAP (9040 m s-1 and 36.0 GPa) are superior to that of RDX (8796 m s-1 and 33.6 GPa). In addition, TNAP also has lower mechanical sensitivity (IS > 40 J, FS = 244 N) and higher decomposition temperature (Td = 221 °C) than RDX (IS = 7.4 J, FS = 120 N, and Td = 204 °C). These experimental results suggest that TNAP may become a new candidate for secondary explosives.

Keywords: sensitivity; novel energetic; functionalized azopyrazole; energetic materials; polynitro functionalized; low sensitivity

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.