LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thiazoline Carbene-Cu(I)-Amide complexes: Efficient White Electroluminescence from Combined Monomer and Excimer Emission.

Photo by theshubhamdhage from unsplash

Luminescent carbene-metal-amide complexes bearing group 11 metals (Cu, Ag, Au) have recently attracted great attention due to their exceptional emission efficiency and high radiative decay rates (kr). These materials provide… Click to show full abstract

Luminescent carbene-metal-amide complexes bearing group 11 metals (Cu, Ag, Au) have recently attracted great attention due to their exceptional emission efficiency and high radiative decay rates (kr). These materials provide a less costly alternative to organic light-emitting diode (OLED) emitters based on more scarce metals, such as Ir and Pt. Herein, a series of eight Cu(I) complexes bearing as yet unexplored 1,3-thiazoline carbenes have been investigated and analyzed with respect to their light emission properties and OLED application. For the first time among the class of copper-based organometallic compounds the formation of efficient electroluminescent excimers is demonstrated. The prevalence of electroluminescence (EL) from either the monomer (bluish green) or the excimer (orange-red) can be adjusted in vacuum-deposited emissive layers by altering the extent of steric encumbrance of the emitter or its concentration. Optimized conditions in terms of the emitter structure and mass fraction allowed a simultaneous EL from the monomer and excimer, which laid the basis for a preparation of a single-emitter white OLED (WOLED) with external quantum efficiency of 16.5% and a maximum luminance of over 40000 cd m-2. Wide overlapping emission bands of the monomer and excimer ensure a device color rendering index (CRI) of above 80. In such a way the prospects of copper complexes as cost-effective materials for lighting devices are demonstrated, offering expense reduction through a cheaper emissive component and a simplified device architecture.

Keywords: emission; amide complexes; electroluminescence; thiazoline carbene; monomer excimer

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.