Soft-tissue trauma emergency caused by natural disasters and traffic accidents is highly prevalent, which can result in massive bleeding, pathogen infection, and even death. Although numerous tissue adhesives can bind… Click to show full abstract
Soft-tissue trauma emergency caused by natural disasters and traffic accidents is highly prevalent, which can result in massive bleeding, pathogen infection, and even death. Although numerous tissue adhesives can bind to tissue surfaces and cover wounds, most of them still have several deficiencies, including long gelation time, poor adhesive strength, and anti-infection, making them inappropriate for use as first-aid bandages. Herein, injectable and self-healing four-arm-PEG-CHO/polyethyleneimine (PEI) tissue adhesives as liquid first-aid supplies are developed via the dynamic Schiff base reaction for trauma emergency. It is found that the prepared hydrogel adhesives exhibit short and controlled gelation time (9∼88 s), strong adhesive strength, and excellent antibacterial ability. Their hemostatic and antimicrobial performances can be tailored by the mass ratio of four-arm-PEG-CHO/PEI. Moreover, in vitro biological assays display that the developed tissue adhesives possess satisfactory cyto/hemocompatibility. Importantly, in vivo the designed adhesives show fast hemostatic capacity and excellent anti-infection as compared to commercial Prontosan gel. Thus, this work indicates that the four-arm-PEG-CHO/PEI first-aid tissue adhesives display great potential for wound emergency management.
               
Click one of the above tabs to view related content.