LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tailoring Ordered Wrinkle Arrays for Tunable Surface Performances by Template-Modulated Gradient Films.

Photo by codioful from unsplash

Complex wrinkled microstructures are ubiquitous in natural systems and living bodies. Although homogeneous wrinkles in film-substrate bilayers have been extensively investigated in the past 2 decades, tailoring heterogeneous wrinkles by… Click to show full abstract

Complex wrinkled microstructures are ubiquitous in natural systems and living bodies. Although homogeneous wrinkles in film-substrate bilayers have been extensively investigated in the past 2 decades, tailoring heterogeneous wrinkles by a facile method is still a challenge. Here, we report on the controllable heterogeneous wrinkles in template-modulated thickness-gradient metal films sputter-deposited on polydimethylsiloxane substrates. It is found that the stress of the gradient film is strongly position-dependent and the wrinkles are always restricted in thinner film regions. The morphological characteristic and formation mechanism of the heterogeneous wrinkles are analyzed and discussed in detail based on the stress theory. Ordered wrinkle arrays are achieved by adjusting the deposition time, copper grid period, template shape, and lifting height. The surface performances (e.g., the friction property) are well controlled by the wrinkle arrays. This work could promote better understanding of the spontaneously heterogeneous wrinkles in template-modulated gradient films and controllable fabrication of various wrinkle arrays by independently tuning film deposition conditions and template parameters.

Keywords: ordered wrinkle; modulated gradient; wrinkle arrays; surface performances; heterogeneous wrinkles; template modulated

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.