LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adjusting the Energy-Storage Characteristics of 0.95NaNbO3-0.05Bi(Mg0.5Sn0.5)O3 Ceramics by Doping Linear Perovskite Materials.

Photo by mbrunacr from unsplash

Passive electronic components are an indispensable part of integrated circuits, which are key to the miniaturization and integration of electronic components. As an important branch of passive devices, the relatively… Click to show full abstract

Passive electronic components are an indispensable part of integrated circuits, which are key to the miniaturization and integration of electronic components. As an important branch of passive devices, the relatively low energy-storage capacity of ceramic capacitors limits their miniaturization. To solve this problem, this study adopts the strategy of doping linear materials, specifically CT, into 0.95NaNbO3-0.05Bi(Mg0.5Sn0.5)O3 (0.95NN-0.05BMS) ceramics to increase the disorder of the system through the nonequivalent substitution of A and B sites to achieve the sintering temperature and the residual polarization. Meanwhile, the breakdown electric field strength (Eb) is improved by adjusting the activation energy of the material and the relative density of the sample. Thus, an ultrahigh Wrec of 6.35 J/cm3 and a η of 80% are obtained at an Eb of 646 kV/cm. Additionally, through the analysis of the dielectric temperature spectrum, it is found that the 0.88(0.95NN-0.05BMS)-0.12CT sample can satisfy the technical standards of general ceramic Z5U and patch ceramic X6R. The performance of the ceramics also remains stable within a temperature range of 20-200 °C, a frequency range of 1-100 Hz, and 104 cycles. The charge and discharge tests of the ceramics show that the t0.9 of the sample floats between 1.02 and 1.04 μs, which illustrates its potential application in the field of pulsed power components.

Keywords: 05bi mg0; energy; energy storage; 95nanbo3 05bi; mg0 5sn0; doping linear

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.