LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrafast Kinetics in a PAN/MgFe2O4 Flexible Free-Standing Anode Induced by Heterojunction and Oxygen Vacancies.

Photo from wikipedia

Flexibility and power density are key factors restricting the development of flexible lithium-ion batteries (FLIBs). Interface and defect engineering can modify the intrinsic ion/electron kinetics by regulating the electronic structure.… Click to show full abstract

Flexibility and power density are key factors restricting the development of flexible lithium-ion batteries (FLIBs). Interface and defect engineering can modify the intrinsic ion/electron kinetics by regulating the electronic structure. Herein, a polyacrylonitrile/MgFe2O4 (PAN-MFO) electrode with heterojunction and oxygen vacancies was first designed and synthesized as a flexible free-standing anode of FLIBs by electrostatic spinning technology. The PAN carbon nanofiber (PAN-CNF) as the skeleton structure provides fast conductive channels, buffers the volume expansion, and enhances the cycle stability. The heterostructure constructs the internal electric field, facilitates the Li+/charge transfer, intensifies the Li+ adsorption energy, and enhances the interfacial lithium storage. Oxygen vacancies improve the intrinsic conductivity, lower the Li+ diffusion barrier, weaken the Fe-O bonding, and facilitate the conversion reaction. Because of the synergistic effect of the multifunctional structure, the PAN-MFO shows superior cycle and rate performance with ultrafast kinetics. Flexible LiCoO2/PAN-MFO full pouch cells were also assembled that demonstrated a stable cycle performance and power supply in both the plain and bent states.

Keywords: free standing; flexible free; heterojunction oxygen; standing anode; oxygen; oxygen vacancies

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.