LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrahigh Energy-Storage Performances in Lead-free Na0.5Bi0.5TiO3-Based Relaxor Antiferroelectric Ceramics through a Synergistic Design Strategy.

Photo from wikipedia

Dielectric ceramics with outstanding energy-storage performances are nowadays in great demand for pulsed power electronic systems. Here, we propose a synergistic design strategy to significantly enhance the energy-storage properties of… Click to show full abstract

Dielectric ceramics with outstanding energy-storage performances are nowadays in great demand for pulsed power electronic systems. Here, we propose a synergistic design strategy to significantly enhance the energy-storage properties of (1 - x)(0.94Na0.5Bi0.5TiO3-0.06BaTiO3)-xCaTi0.75Ta0.2O3 solid solution ceramics through introducing polar nanoregions, shifting rhombohedral to tetragonal phase transition below room temperature (stable antiferroelectric characteristic), as well as increasing the band gap in the system. Ultrahigh energy-storage properties with a record value of recoverable energy-storage density Wrec ∼ 9.55 J/cm3 and a high efficiency η ∼ 88% are achieved in Na0.5Bi0.5TiO3-based bulk ceramics with x = 0.24. Moreover, high Wrec (>3.4 J/cm3) and η (>90%) with a variation of less than 6% can be observed in a wide frequency and temperature frequency range of 5-200 Hz and 25-140 °C. Our research result not only indicates the great possibility of Na0.5Bi0.5TiO3-based lead-free compositions to replace lead-based energy-storage ceramics but also gives an effective strategy to design ultrahigh energy-storage performances for eco-friendly ceramics.

Keywords: energy; ultrahigh energy; storage performances; 5bi0 5tio3; energy storage

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.