LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Universal Strategy for Preparing Highly Stable PBA/Ti3C2Tx MXene toward Lithium-Ion Batteries via Chemical Transformation.

Photo from wikipedia

Prussian blue analogues (PBAs) are believed to be intriguing anode materials for Li+ storage because of their tunable composition, designable topologies, and tailorable porous structures, yet they suffer from severe… Click to show full abstract

Prussian blue analogues (PBAs) are believed to be intriguing anode materials for Li+ storage because of their tunable composition, designable topologies, and tailorable porous structures, yet they suffer from severe capacity decay and inferior cycling stability due to the volume variation upon lithiation and high electrical resistance. Herein, we develop a universal strategy for synthesizing small PBA nanoparticles hosted on two-dimensional (2D) MXene or rGO (PBA/MX or PBA/rGO) via an in situ transformation from ultrathin layered double hydroxides (LDH) nanosheets. 2D conductive nanosheets allow for fast electron transport and guarantee the full utilization of PBA even at high rates; at the meantime, PBA nanoparticles effectively prevent 2D materials from restacking and facilitate rapid ion diffusion. The optimized Ni0.8Mn0.2-PBA/MX as an anode for lithium-ion batteries (LIBs) delivers a capacity of 442 mAh g-1 at 0.1 A g-1 and an excellent cycling robustness in comparison with bare PBA bulk crystals. We believe that this study offers an alternative choice for rationally designing PBA-based electrode materials for energy storage.

Keywords: pba; ion batteries; lithium ion; universal strategy; ion

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.