LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of a Fluorine-Free Phosphonium-Based Ionic Liquid Electrolyte and Its Compatibility with Lithium Metal.

Photo from wikipedia

A novel fluorine-free ionic liquid electrolyte comprising lithium dicyanamide (LiDCA) and trimethyl(isobutyl)phosphonium tricyanomethanide (P111i4TCM) in a 1:9 molar ratio is studied as an electrolyte for lithium metal batteries. At room… Click to show full abstract

A novel fluorine-free ionic liquid electrolyte comprising lithium dicyanamide (LiDCA) and trimethyl(isobutyl)phosphonium tricyanomethanide (P111i4TCM) in a 1:9 molar ratio is studied as an electrolyte for lithium metal batteries. At room temperature, it demonstrates high ionic conductivity and viscosity of about 4.5 mS cm-1 and 64.9 mPa s, respectively, as well as a 4 V electrochemical stability window (ESW). Li stripping/plating tests prove the excellent electrolyte compatibility with Li metal, evidenced by the remarkable cycling stability over 800 cycles. The evolution of the Li-electrolyte interface upon cycling was investigated via electrochemical impedance spectroscopy, displaying a relatively low impedance increase after the initial formation cycles. Finally, the solid electrolyte interphase (SEI) formed on Li metal appeared to have a bilayer structure mostly consisting of DCA and TCM reduction products. Additionally, decomposition products of the phosphonium cation were also detected, despite prior studies reporting its stability against Li metal.

Keywords: fluorine free; ionic liquid; phosphonium; liquid electrolyte; metal; electrolyte

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.