LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetic Configuration Driven Femtosecond Spin Dynamics in Synthetic Antiferromagnets.

Photo by ninjason from unsplash

Ultrafast demagnetization in diverse materials has sparked immense research activities due to its captivating richness and contested underlying mechanisms. Among these, the two most celebrated mechanisms have been the spin-flip… Click to show full abstract

Ultrafast demagnetization in diverse materials has sparked immense research activities due to its captivating richness and contested underlying mechanisms. Among these, the two most celebrated mechanisms have been the spin-flip scattering (SFS) and spin transport (ST) of optically excited carriers. In this work, we have investigated femtosecond laser-induced ultrafast demagnetization in perpendicular magnetic anisotropy-based synthetic antiferromagnets (p-SAFs) where [Co/Pt]n-1/Co multilayer blocks are separated by Ru or Ir spacers. Our investigation conclusively shows that the ST of optically excited carriers can have a significant contribution to the ultrafast demagnetization in addition to SFS processes. Moreover, we have also achieved an active control over the individual mechanisms by specially designing the SAF samples and altering the external magnetic field and excitation fluence. Our study provides a vital understanding of the underlying mechanism of ultrafast demagnetization in synthetic antiferromagnets, which will be crucial in future research and applications of antiferromagnetic spintronics.

Keywords: synthetic antiferromagnets; femtosecond; magnetic configuration; spin; ultrafast demagnetization

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.