LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coupling Tetraalkylammonium and Ethylene Glycol Ether Side Chain To Enable Highly Soluble Anthraquinone-Based Ionic Species for Nonaqueous Redox Flow Battery.

Photo by michael_f from unsplash

Nonaqueous redox flow batteries (NARFBs) have promise for large-scale energy storage with high energy density. Developing advanced active materials is of paramount importance to achieve high stability and energy density.… Click to show full abstract

Nonaqueous redox flow batteries (NARFBs) have promise for large-scale energy storage with high energy density. Developing advanced active materials is of paramount importance to achieve high stability and energy density. Herein, we adopt the molecular engineering strategy by coupling tetraalkylammonium and an ethylene glycol ether side chain to design anthraquinone-based ionic active species. By adjusting the length of the ethylene glycol ether chain, an ionic active species 2-((9,10-dioxo-9,10-dihydroanthracen-1-yl)amino)-N-(2-(2-methoxyethoxy)ethyl)-(N,N-dimethylethan-1-aminium)-bis(trifluoromethylsulfonyl)imide (AQEG2TFSI) with high solubility and stability is obtained. Paired with a FcNTFSI cathode, the full battery provides an impressive cycling performance with discharge capacity retentions of 99.96% and 99.74% per cycle over 100 cycles with 0.1 and 0.4 M AQEG2TFSI, respectively.

Keywords: nonaqueous redox; ethylene glycol; glycol ether; chain

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.