LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Control in Local Coordination Environment Boosting Activating Molecular Oxygen with an Atomically Dispersed Binary Mn-Co Catalyst.

Activation of molecular oxygen plays a crucial role in natural organisms and the modern chemical industry. Herein, we report a Mn-Co dual-single-atom catalyst that exerts a specific synergy in boosting… Click to show full abstract

Activation of molecular oxygen plays a crucial role in natural organisms and the modern chemical industry. Herein, we report a Mn-Co dual-single-atom catalyst that exerts a specific synergy in boosting O2 activation by collaboration between two distinct types of activation sites. Taking the oxidative esterification of the biomass platform 5-hydroxymethylfurfural (HMF) as the model reaction, the activation of O2 is demonstrated through transforming O2 into a reactive superoxide anion radical (O2•-) on Co-N4 sites and, meanwhile, by reversible consumption and supplement of coordinated surface oxygen as a new type of reactive oxygen species (ROS) on N,O-coordinated single-atom Mn sites (Mn-NxOy). EXAFS analysis results show a longer average Mn-O bond distance at near 2.19 Å, which makes the breaking and formation of surface Mn-O bonds easier to cycle. Control experiments support that such Mn-O bonding conditions could facilitate H-elimination of C-H in HMF. The co-existence of two types of ROS effectively matches the oxidation of hydroxyl and aldehyde groups, and thus, the overall reaction is boosted in excellent yield of diester (95.8%) with an extremely high carbon balance. This study represents a rare example of taking advantage of the synergy of the diatomic catalyst for activating O2 by two types of activation pathways.

Keywords: molecular oxygen; catalyst; control local; oxygen; local coordination; activation

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.