LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intelligent Nanoplatform with Multi Therapeutic Modalities for Synergistic Cancer Therapy.

Photo from wikipedia

Chemodynamic therapy (CDT) has attracted increasing attention in tumor treatment but is limited by insufficient endogenous H2O2. Moreover, it is challenging for monotherapy to achieve a satisfactory outcome due to… Click to show full abstract

Chemodynamic therapy (CDT) has attracted increasing attention in tumor treatment but is limited by insufficient endogenous H2O2. Moreover, it is challenging for monotherapy to achieve a satisfactory outcome due to tumor complexity. Herein, we developed an intelligent nanoplatform that could respond to a tumor microenvironment to induce efficient CDT without complete dependence on H2O2 and concomitantly generate chemotherapy and oncosis therapy (OT). The nanoplatform was constructed by a calcium- and iron-doped mesoporous silica nanoparticle (CFMSN) loaded with dihydroartemisinin (DHA). After entering into cancer cells, the nanoplatform could directly convert the intracellular H2O2 into toxic •OH due to the Fenton-like activity of CFMSN. Meanwhile, the acidic microenvironment and endogenous chelating molecules triggered Ca2+ and Fe3+ release from the nanoplatform, causing particle collapse with accompanying DHA release for chemotherapy. Simultaneously, the released Ca2+ induced intracellular Ca2+-overloading for OT, which was further enhanced by DHA, while the released Fe3+ was reduced to reactive Fe2+ by intracellular glutathione, guaranteeing efficient Fenton reaction-mediated CDT. Moreover, Fe2+ cleaved the peroxy bonds of DHA to generate C-centered radicals to further amplify CDT. Both in vitro and in vivo results confirmed that the nanoplatform exhibited excellent anticancer efficacy via the synergistic effect of multi therapeutic modalities, which is extremely promising for high-efficient cancer therapy.

Keywords: therapeutic modalities; multi therapeutic; therapy; intelligent nanoplatform; nanoplatform; cancer

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.