Hydrogels have become popular in biomedical applications, but their applications in muscle and tendon-like bioactuators have been hindered by low toughness and elastic modulus. Recently, a significant toughness enhancement of… Click to show full abstract
Hydrogels have become popular in biomedical applications, but their applications in muscle and tendon-like bioactuators have been hindered by low toughness and elastic modulus. Recently, a significant toughness enhancement of a single hydrogel network has been successfully achieved by the Hofmeister effect. However, little has been conducted for the Hofmeister effect on the hybrid hydrogels, although they have a special network structure consisting of two types of polymer components. Herein we fabricated hybrid poly(2-hydroxyethyl methacrylate) (PHEMA)-gelatin hydrogels with high mechanical performance and stimuli response. An ideal bicontinuous phase separation structure of the PHEMA (rigid) and gelatin (ductile) was observed with embedded microdisc-like gelatin in the three-dimensional polymeric network of PHEMA. A significant enhancement of mechanical performance by the Hofmeister effect was attributed to the salting-out-induced stronger and closer interphase interaction between PHEMA and gelatin. A superior comprehensive mechanical performance with fracture elongation over 650%, tensile strength of 5.2 MPa, toughness of 13.5 MJ/m3, and modulus of 45.6 MPa was achieved with the salting-out effect. More specifically, the synergy of phase separation and Hofmeister effect enable the hydrogel to contract with an enhanced modulus in high-concentration salt solutions, while the same hydrogel swells and relaxes in dilute solutions, exhibiting an ionic stimulus response and excellent shape-memory properties like those of most artificial muscle. This is manifested in highly stretched, twisted, and knotted hydrogel strips that can rapidly recover their original shape in a dilute salt solution. The high strength and modulus, ionic stimuli response, and shape memory property make the hybrid hydrogel a promising material for bioactuators in various biomedical applications.
               
Click one of the above tabs to view related content.