LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Demulsification of Bacteria-Stabilized Pickering Emulsions Using Modified Silica Nanoparticles.

Pickering emulsions stabilized by bacteria acting as particle emulsifiers are new platforms for microbial transformations of hydrophobic chemicals. However, their high stability often hampers demulsification during downstream processing. Since the… Click to show full abstract

Pickering emulsions stabilized by bacteria acting as particle emulsifiers are new platforms for microbial transformations of hydrophobic chemicals. However, their high stability often hampers demulsification during downstream processing. Since the existing methods (like addition of surfactants) to demulsify bacteria-stabilized Pickering emulsions have negative effects, new practical methods need to be developed. Here, using chemically modified fumed silica particles with different hydrophobicity, the demulsification of W/O Pickering emulsions stabilized by Mycobacterium neoaurum whole cells was first studied. The binary particle-stabilized emulsions exhibited phase inversion and dewatering induced by the coalescence of W/O emulsions or creaming of O/W emulsions. The silica particle hydrophobicity and concentration were the important parameters influencing the emulsion type, droplet morphology, and dewatering rate. The highest dewatering rate and largest droplet size were obtained at the inversion point from W/O to O/W. Confocal microscopy showed that no interaction between the bacteria and silica particles existed and the silica particle adsorption at the interface induced the detachment of bacteria from the interface, revealing that there was competitive adsorption between the binary particles at the interface. Based on these results, we suggested that the average hydrophobicity of the binary particles at the interface would determine the emulsion type and stability. Finally, this strategy was successfully applied to the demulsification of the Pickering emulsion formed during microbial transformation of sterols. Overall, this study provides a new strategy to demulsify Pickering emulsions by addition of another particle emulsifier. This is also the first example of separation of products as well as organic phases after microbial transformation in Pickering emulsions.

Keywords: pickering emulsions; stabilized pickering; bacteria stabilized; particle; demulsification bacteria

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.