LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Environment-Resistant Organohydrogel-Based Sensor Enables Highly Sensitive Strain, Temperature, and Humidity Responses.

Photo by fabiooulucas from unsplash

Conductive hydrogels have been extensively used in wearable skin sensors owing to their outstanding flexibility, tissuelike compliance, and biocompatibility. However, the dehydration and embrittlement of hydrogels can result in sensitivity… Click to show full abstract

Conductive hydrogels have been extensively used in wearable skin sensors owing to their outstanding flexibility, tissuelike compliance, and biocompatibility. However, the dehydration and embrittlement of hydrogels can result in sensitivity loss or even invalidation, restraining their wearable applications in external environments, especially at low temperatures and in arid environments. Herein, an environment-resistant organohydrogel is developed for multifunctional sensors. A double-network organohydrogel based on hyaluronic acid and poly(acrylic acid-co-acrylamide) is developed, and glycerol is introduced into the organohydrogel network via a solvent displacement strategy. Owing to the water-locking effects of glycerol and tough polymeric backbone, the resultant organohydrogel not only exhibits stable tensibility but also maintains excellent flexibility and stable conductivity with the environment-resistant properties, including freezing resistance against -30 °C and moisture retention at 4% relative humidity in a high temperature of 60 °C. Moreover, a series of organohydrogel-based sensors and an array device are developed to achieve highly sensitive strain, temperature, and humidity responses and exhibit a high gauge factor of 10.79 in the strain-sensitive test. This work develops a universal ionic skin based on organohydrogels to be applied to wearable sensors for health monitoring.

Keywords: humidity; temperature; resistant organohydrogel; organohydrogel based; environment resistant

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.