LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stretchable Encapsulation Materials with High Dynamic Water Resistivity and Tissue-Matching Elasticity.

Photo from wikipedia

Flexible implantable medical devices (IMDs) are an emerging technology that may substantially improve the disease treatment efficacy and quality of life of patients. While many advancements have been achieved in… Click to show full abstract

Flexible implantable medical devices (IMDs) are an emerging technology that may substantially improve the disease treatment efficacy and quality of life of patients. While many advancements have been achieved in IMDs, the constantly straining application conditions impose extra requirements for the packaging material, which needs to retain both high stretchability and high water resistivity under dynamic strains in a physiological environment. This work reports a polyisobutylene (PIB) blend-based elastomer that simultaneously offers a tissue-like elastic modulus and excellent water resistivity under dynamic strains. The PIB blend is a homogeneous mixture of two types of PIB molecules with distinct molecular weights. The blend achieved an optimal Young's modulus of 62 kPa, matching those of soft biological tissues. The PIB blend film also exhibited an extremely low water permittivity of 1.6-2.9 g m-2 day-1, from unstrained to 50% strain states. The combination of high flexibility and dynamic water resistivity was tested using triboelectric nanogenerators (TENGs). The PIB blend-packaged TENG was able to stably operate in water for 2 weeks, substantially surpassing the protection offered by Ecoflex. This work offered a promising material solution for packaging flexible IMDs to achieve stable performance in a strained physiological environment.

Keywords: pib blend; water; water resistivity; dynamic water; tissue

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.