LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ionic Liquid Decelerates Single-Stranded DNA Transport through Molybdenum Disulfide Nanopores.

Photo by _louisreed from unsplash

Nanopores in two-dimensional (2D) materials have emerged to offer in principle necessary spatial resolution for high-throughput DNA sequencing. However, their fidelity is severely limited by the fast DNA translocation. A… Click to show full abstract

Nanopores in two-dimensional (2D) materials have emerged to offer in principle necessary spatial resolution for high-throughput DNA sequencing. However, their fidelity is severely limited by the fast DNA translocation. A recent experiment indicates that introducing ionic liquids could slow down DNA translocation in a MoS2 nanopore. However, the corresponding in-depth molecular mechanism underlying the experimental findings is not fully understood, which is crucial for the future improvement of rational DNA translocation control. Here, we computationally investigate and then experimentally identify the effect of BmimCl ionic liquid on the retardation of ssDNA translocation through a single-layer MoS2 nanopore. Our all-atom molecular dynamics simulations demonstrate that the strong interaction between Bmim+ and ssDNA offers a considerable dragging force to decelerate the electrophoretic motion of ssDNA in the BmimCl solution. Moreover, we show that Bmim+ ions exhibit preferential binding on the sulfur edges of the nanopore. These Bmim+ in the pore region can not only act as a steric blockage but also form π-π stackings with nucleobases, which provide a further restriction on the ssDNA motion. Therefore, our molecular dynamics simulation investigations deepen the understanding of the critical role of ionic liquid in DNA translocation through a nanopore from a molecular landscape, which may benefit practical implementations of ionic liquids in nanopore sequencing.

Keywords: ionic liquid; ssdna; dna translocation; dna

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.