LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

2D/2D Interface Engineering Promotes Charge Separation of Mo2C/g-C3N4 Nanojunction Photocatalysts for Efficient Photocatalytic Hydrogen Evolution.

Photo by thisisengineering from unsplash

The focus of designing and synthesizing composite catalysts with high photocatalytic efficiency is the regulation of nanostructures and optimization of heterojunctions. By increasing the contact area between the catalysts, additional… Click to show full abstract

The focus of designing and synthesizing composite catalysts with high photocatalytic efficiency is the regulation of nanostructures and optimization of heterojunctions. By increasing the contact area between the catalysts, additional reaction sites can be established and charge carriers can be transferred and reacted faster. Here, two-dimensional (2D) Mo2C is prepared via a novel approach by carbonizing precursors intercalated by low-boiling solvents, and a composite catalyst Mo2C/graphitic carbon nitride (g-C3N4) with 2D to 2D structure optimization was synthesized through the self-assembly of 2D Mo2C and 2D g-C3N4. The hydrogen production rate of the photocatalyst at the optimal ratio is 675.27 μmol g-1 h-1, which further exceeds 2D g-C3N4. It is 5.1 times that of the 7 wt % B/2D Mo2C/g-C3N4 photocatalyst and also 3.5 times that of 0.5 wt % Pt/g-C3N4. The enhanced photocatalytic activity is attributed to the fact that Mo2C as a cocatalyst can rapidly transfer the photogenerated electrons of g-C3N4 to the surface of Mo2C, and the 2D to 2D structure can provide abundant reaction sites for photogenerated electrons to prevent their recombination with holes. This study provides new ideas and techniques for the development of 2D platinum-like cocatalysts and the optimization of nanojunctions.

Keywords: mo2c; hydrogen; engineering promotes; mo2c c3n4; interface engineering

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.