The present study pioneered an oxygen migration-driven metal to insulator transition Mott memory, a new type of nonvolatile memory using lanthanum titanium oxide (LTO). We first show the reset first… Click to show full abstract
The present study pioneered an oxygen migration-driven metal to insulator transition Mott memory, a new type of nonvolatile memory using lanthanum titanium oxide (LTO). We first show the reset first bipolar property without an initial electroforming process in LTO. We used oxygen-deficient ZnO as an interlayer between LTO and a W electrode to clarify whether oxygen migration activates LTO as the Mott transition. ZnO oxygen deficiency provides oxygen ion migration paths as well as a reservoir, facilitating oxygen migration from LTO to the W electrode. Thus, including the ZnO interlayer improved oxygen migration between LTO and the W electrode, achieving a 10-fold increased on/off current ratio. The current research contributes to a better understanding of valence change Mott memory by exploring the LTO resistive switching mechanism and ZnO interlayer influences on the oxygen migration process.
               
Click one of the above tabs to view related content.