LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of the Substrate on MoS2 Monolayer Morphology: An Integrated Computational and Experimental Study.

Photo from wikipedia

Synthesis of two-dimensional materials, specifically transition metal dichalcogenides (TMDs), with controlled lattice orientations is a major barrier to their industrial applications. Controlling the orientation of as-grown TMDs is critical for… Click to show full abstract

Synthesis of two-dimensional materials, specifically transition metal dichalcogenides (TMDs), with controlled lattice orientations is a major barrier to their industrial applications. Controlling the orientation of as-grown TMDs is critical for preventing the formation of grain boundaries, thus reaching their maximum mechanical and optoelectronic performance. Here, we investigated the role of the substrate's crystallinity in the growth orientation of 2D materials using reactive molecular dynamics (MD) simulations and verified with experimental growth using the chemical vapor deposition (CVD) technique. We considered MoS2 as our model material and investigated its growth on crystalline and amorphous silica and sapphire substrates. We revealed the role of the substrate's energy landscape on the orientation of as-grown TMDs, where the presence of monolayer-substrate energy barriers perpendicular to the streamlines hinder the detachment of precursor nuclei from the substrate. We show that MoS2 monolayers with controlled orientations could not be grown on the SiO2 substrate and revealed that amorphization of the substrate changes the intensity and equilibrium distance of monolayer-substrate interactions. Our simulations indicate that 0° rotated MoS2 is the most favorable configuration on a sapphire substrate, consistent with our experimental results. The experimentally validated computational results and insight presented in this study pave the way for the high-quality synthesis of TMDs for high-performance electronic and optoelectronic devices.

Keywords: substrate mos2; mos2 monolayer; substrate; monolayer; study; effect substrate

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.