LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tuning Molecular Conformations to Enhance Spontaneous Orientation Polarization in Organic Thin Films.

Photo by karolsmoczynski from unsplash

Three isomeric derivatives of 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) bearing ethyl groups on the N-phenyl moieties were synthesized to elucidate the effects of intramolecular interactions on spontaneous orientation polarization (SOP) in thin films.… Click to show full abstract

Three isomeric derivatives of 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) bearing ethyl groups on the N-phenyl moieties were synthesized to elucidate the effects of intramolecular interactions on spontaneous orientation polarization (SOP) in thin films. The films of the TPBi derivatives displayed enhanced SOP with a surface potential change of up to 1.8 times that for TPBi, and the p-substituted derivative exhibited the largest potential change reported to date (+141.0 mV/nm). Density functional theory calculations and single-crystal structure analysis suggest that the introduction of the ethyl groups switched the stable molecular conformation from C1 to C3 symmetry. Through analysis of the structural anisotropy in the films by spectral ellipsometry and two-dimensional (2D) grazing-incidence wide-angle X-ray scattering, we conclude that the conformational change of the molecules was the major factor underlying the SOP enhancement.

Keywords: spontaneous orientation; thin films; tuning molecular; orientation polarization

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.