LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bio-Inspired Bianisotropic Magneto-Sensitive Elastomers with Excellent Multimodal Transformation.

Photo by imsogabriel from unsplash

Magneto-sensitive soft materials that can accomplish fast, remote, and reversible shape morphing are highly desirable for practical applications including biomedical devices, soft robotics, and flexible electronics. In conventional magneto-sensitive elastomers… Click to show full abstract

Magneto-sensitive soft materials that can accomplish fast, remote, and reversible shape morphing are highly desirable for practical applications including biomedical devices, soft robotics, and flexible electronics. In conventional magneto-sensitive elastomers (MSEs), there is a tradeoff between employing hard magnetic particles with costly magnetic programming and utilizing soft magnetic particle chains causing tedious and small deformation. Here, inspired by the shape and movement of mimosa, a novel soft magnetic particle doped shape material bianisotropic magneto-sensitive elastomer (SM bianisotropic MSE) with multimodal transformation and superior deformability is developed. The high-aspect-ratio shape anisotropy and the material anisotropy in which the magnetic particles are arranged in a chainlike structure together impart magnetic anisotropy to the SM bianisotropic MSE. A magneto-elastic analysis model is proposed, and it is elucidated that magnetic anisotropy leads to peculiar field-direction-dependent multimodal transformation. More importantly, a quadrilateral assembly and a regular hexagon assembly based on this SM bianisotropic MSE are designed, and they exhibit 2.4 and 1.7 times the deformation capacity of shape anisotropic samples, respectively. By exploiting the multidegree of freedom and excellent deformability of the SM bianisotropic MSE, flexible logic switches and ultrasoft magnetic manipulators are further demonstrated, which prove its potential applications in future intelligent flexible electronics and autonomous soft robotics.

Keywords: magneto; bianisotropic; magneto sensitive; multimodal transformation; shape

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.