LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneously Accelerating Carrier Transfer and Enhancing O2/CH4 Activation via Tailoring the Oxygen-Vacancy-Rich Surface Layer for Cocatalyst-Free Selective Photocatalytic CH4 Conversion.

Photo from wikipedia

Solar energy-driven direct CH4 conversion to liquid oxygenates provides a promising avenue toward green and sustainable CH4 industry, yet still confronts issues of low selectivity toward single oxygenate and use… Click to show full abstract

Solar energy-driven direct CH4 conversion to liquid oxygenates provides a promising avenue toward green and sustainable CH4 industry, yet still confronts issues of low selectivity toward single oxygenate and use of noble-metal cocatalysts. Herein, for the first time, we report a defect-engineering strategy that rationally regulates the defective layer over TiO2 for selective aerobic photocatalytic CH4 conversion to HCHO without using noble-metal cocatalysts. (Photo)electrochemical and in situ EPR/Raman spectroscopic measurements reveal that an optimized oxygen-vacancy-rich surface disorder layer with a thickness of 1.37 nm can simultaneously promote the separation and migration of photogenerated charge carriers and enhance the activation of O2 and CH4, respectively, to •OH and •CH3 radicals, thereby synergistically boosting HCHO production in aerobic photocatalytic CH4 conversion. As a result, a HCHO production rate up to 3.16 mmol g-1 h-1 with 81.2% selectivity is achieved, outperforming those of the reported state-of-the-art photocatalytic systems. This work sheds light on the mechanism of O2-participated photocatalytic CH4 conversion on defective metal oxides and expands the application of defect engineering in designing low-cost and efficient photocatalysts.

Keywords: ch4 conversion; oxygen vacancy; ch4; layer; photocatalytic ch4

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.