Noble metal nanozymes have shown great promise in biomedicine; however, developing novel and high-performance noble metal nanozymes is still highly pressing and challenging. Herein, we, for the first time, prepared… Click to show full abstract
Noble metal nanozymes have shown great promise in biomedicine; however, developing novel and high-performance noble metal nanozymes is still highly pressing and challenging. Herein, we, for the first time, prepared two-dimensional (2D) Pd@Ir bimetal nanosheets (NSs) with well-defined size and composition by a facile seed-mediated growth strategy. Enzyme-mimicked investigations find that the Pd@Ir NSs possess oxidase (OXD)-, peroxidase (POD)-, and catalase (CAT)-like multienzyme-mimetic activities. Especially, they exhibited much higher OXD- and POD-like activities than individual Pd NSs and Ir nanoparticles (NPs). The density functional theory (DFT) calculations reveal that the adsorption energy of O2 on Pd@Ir NSs is lower than that on the pure Pd NSs, which is more favorable for the conversion of O2 molecules from the triplet state (3O2) into the singlet state (1O2). Finally, based on the outstanding nanozyme activities to yield highly active singlet oxygen (1O2) and hydroxyl radicals (•OH) as well as excellent biosafety, the as-prepared Pd@Ir NSs were applied to treat bacteria-infected wounds, and satisfactory therapeutic outcomes were achieved. We believe that the highly efficient 2D Pd@Ir nanozyme will be an effective therapeutic reagent for various biomedical applications.
               
Click one of the above tabs to view related content.