LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic Nonlinear Behavior of Ionic Liquid-Based Reservoir Computing Devices

Photo by syedmohdali121 from unsplash

Herein, a physical reservoir device that uses faradaic currents generated by redox reactions of metal ions in ionic liquids was developed. Synthetic time-series data consisting of randomly arranged binary number… Click to show full abstract

Herein, a physical reservoir device that uses faradaic currents generated by redox reactions of metal ions in ionic liquids was developed. Synthetic time-series data consisting of randomly arranged binary number sequences (“1” and “0”) were applied as isosceles-triangular voltage pulses with positive and negative voltage heights, respectively, and the effects of the faradaic current on short-term memory and parity-check task accuracies were verified. The current signal for the first half of the triangular voltage-pulse period, which contained a much higher faradaic current component compared to that of the second half of the triangular voltage-pulse period, enabled higher short-term memory task accuracy. Furthermore, when parity-check tasks were performed using a faradaic current generated by asymmetric triangular voltage-pulse levels of 1 and 0, the parity-check task accuracy was approximately eight times higher than that of the symmetric triangular voltage pulse in terms of the correlation coefficient between the output signal and target data. These results demonstrate the advantage of the faradaic current on both the short-term memory characteristics and nonlinear conversion capabilities and are expected to provide guidance for designing and controlling various physical reservoir devices that utilize electrochemical reactions.

Keywords: faradaic current; voltage pulse; triangular voltage; reservoir; voltage; short term

Journal Title: ACS Applied Materials & Interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.