Nature has given us significant inspiration to reproduce bioinspired materials with high strength and toughness. The fabrication of well-defined three-dimensional (3D) hierarchically structured nanocomposite materials from nano- to the macroscale… Click to show full abstract
Nature has given us significant inspiration to reproduce bioinspired materials with high strength and toughness. The fabrication of well-defined three-dimensional (3D) hierarchically structured nanocomposite materials from nano- to the macroscale using simple, green, and scalable methods is still a big challenge. Here, we report a successful attempt at the fabrication of multidimensional bioinspired nanocomposites (fiber, films, plates, hollow tubes, chair models, etc.) with high strength and toughness through self-healing and shape-retaining methods using waterborne polyurethane (WPU) and nanocellulose. In our method, the prepared TEMPO oxide cellulose nanofiber (TOCNF)-WPU hybrid films show excellent moisture-induced self-healing and shape-retaining abilities, which can be used to fabricate all sorts of 3D bioinspired nanocomposites with internal aligned and hierarchical architectures just using water as media. The tensile and flexural strength of the self-assembled plate can reach 186.8 and 193.2 MPa, respectively, and it also has a high toughness of 11.6 MJ m-3. Because of this bottom-up self-assembly strategy, every multidimensional structure we processed has high strength and toughness. This achievement would provide a promising future to realize a large-scale and reliable production of various sorts of bioinspired multidimensional materials with high strength and toughness in a sustainable manner.
               
Click one of the above tabs to view related content.