LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biomimetic Microstructured Antifatigue Fracture Hydrogel Sensor for Human Motion Detection with Enhanced Sensing Sensitivity.

Photo by shubhesh from unsplash

Antifatigue fracture performance and high sensing sensitivity are key characteristics for hydrogel sensors used in flexible electronic applications. Herein, inspired by human muscle tissues and epidermal skin tissues, an effective… Click to show full abstract

Antifatigue fracture performance and high sensing sensitivity are key characteristics for hydrogel sensors used in flexible electronic applications. Herein, inspired by human muscle tissues and epidermal skin tissues, an effective and straightforward strategy is proposed to fabricate hydrogel sensors for detecting human motion with antifatigue fracture performance and high sensing sensitivity. The crystalline regions and orientation along the stretching direction of cellulose nanofiber@carbon nanotube nanohybrids in the hydrogels provide antifatigue fracture performance (the crack does not expand after 2000 stretching cycles, and the fatigue threshold was calculated to be 187 J/m2), which protects hydrogels from severe damage during long-term use. In addition, the microstructured surfaces of the hydrogels with a random height distribution increase the contact area and improve the response to weak stimuli, resulting in a sensing sensitivity of 1.11 kPa-1, 18 times higher than that of a flat hydrogel. This sensing sensitivity is higher than those of most of the hydrogel-based pressure sensors that have been reported earlier. By integrating antifatigue fracture performance and enhanced sensing sensitivity, biomimetic microstructured hydrogel sensors show great potential for use in future flexible electronic applications.

Keywords: sensitivity; hydrogel; antifatigue fracture; sensing sensitivity; fracture performance

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.