LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Performance All-Polymer Photodetectors Enabled by New Random Terpolymer Acceptor with Fine-Tuned Molecular Weight.

Photo from wikipedia

Reducing the dark current density and enhancing the overall performance of the device is the focal point in research for organic photodetectors. Two novel random terpolymers (P3 and P4) with… Click to show full abstract

Reducing the dark current density and enhancing the overall performance of the device is the focal point in research for organic photodetectors. Two novel random terpolymers (P3 and P4) with different molecular weights are synthesized and evaluated as acceptors in bulk heterojunction (BHJ) polymer photodetectors. Compared with known acceptor materials, such as N2200 (P1) and F-N2200 (P2), polymer P4 has a lower lowest unoccupied molecular orbital (LUMO) energy level, favorable morphology, and good miscibility with a donor material J71, which leads to proper phase separation of the blend film and better dissociation of excitons and transport of carriers. Therefore, a considerably low dark current density (Jd) of 1.9 × 10-10 A/cm2 and a high specific detectivity (D*) of 1.8 × 1013 cm Hz1/2/W (also "Jones") at 580 nm under a -0.1 V bias are realized for the P4-based photodetector. More importantly, the device also exhibits a fast response speed (τr/τf = 1.24/1.87 μs) and a wide linear dynamic range (LDR) of 109.2 dB. This work demonstrates that high-performance all-polymer photodetectors with ideal morphology can be realized by random polymer acceptors with a fine-tuned molecular weight.

Keywords: polymer; fine tuned; polymer photodetectors; high performance; performance polymer

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.