LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fluorination Enables Simultaneous Improvements of a Dialkoxybenzene-Based Redoxmer for Nonaqueous Redox Flow Batteries.

Photo from wikipedia

Redoxmers or redox-active organic materials, are one critical component for nonaqueous redox flow batteries (RFBs), which hold high promise in enabling the time domain of the grid. While tuning redox… Click to show full abstract

Redoxmers or redox-active organic materials, are one critical component for nonaqueous redox flow batteries (RFBs), which hold high promise in enabling the time domain of the grid. While tuning redox potentials of redoxmers is a very effective way to enhance energy densities of NRFBs, those improvements often accompany accelerated kinetics of the charged species, undermining stability and cycling performance. Herein, a strategy for designing redoxmers with simultaneous improvements in redox potential and stability is proposed. Specifically, the redoxmer 1,4-di-tert-butyl-2,5-bis(2,2,2-trifluoroethoxy)benzene (ANL-C46) is developed by incorporating fluorinated substitutions into the dialkoxybenzene-based platform. Compared to the non-fluorinated analogue, ANL-C46 demonstrates not only an increased (∼0.41 V) redox potential but also much enhanced stability (1.6 times) and cyclability (4 times) evidenced by electron paramagnetic resonance kinetic study, H-cell and flow cell cycling. In fact, the cycling performance of ANL-C46 is among the best of high potential (>1.0 V vs Ag/Ag+) redoxmers ever reported. Density functional theory calculations suggest that while the introduced fluorine substitutions elevate the redox potentials, they also help to depress the decomposition reactions of the charged redoxmers, affording excellent stability. The findings represent an interesting strategy for simultaneously improving energy density and stability, which could further prompt the development of high-performance redoxmers.

Keywords: redox flow; nonaqueous redox; redox; flow; stability; flow batteries

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.