LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust Superhydrophobic Surfaces via the Sand-In Method.

Photo by k_yasser from unsplash

Superhydrophobic surfaces have gained sustained attention because of their extensive applications in the fields of self-cleaning, anti-icing, and drag reduction systems. Water droplets must have large apparent contact angle (CA)… Click to show full abstract

Superhydrophobic surfaces have gained sustained attention because of their extensive applications in the fields of self-cleaning, anti-icing, and drag reduction systems. Water droplets must have large apparent contact angle (CA) (>150°) and small CA hysteresis (<10°) on these surfaces. However, previous research usually involves complex fabrication strategies to modify the surface wettability. It is also challenging to maintain the temporal and mechanical stability of the delicate surface textures. Here, we develop a one-step solvent-free sand-in method to fabricate robust superhydrophobic surfaces directly atop various substrates with an apparent CA up to ∼163.8° and hysteresis less than 5°. The water repellency can withstand 100 Scotch tape peeling tests and remain stable after being stored under ambient humid conditions in Houston, Texas, for 18 months or being heated at 130 °C in air for 24 h. The superhydrophobic surfaces have excellent anti-icing ability, including a ∼2.6× longer water freezing time and ∼40% smaller ice adhesion strength with the temperature as low as -35 °C. Since the surface layers are fabricated by sanding the substrates with the powder additives, the surface damage can be repaired by a direct re-sanding treatment with the same powder additives. Further sand-in condition screenings broaden surface wettability from hydrophilic to superhydrophobic. The sand-in method induces the surface modification and the formation of the tribofilm. Surface and materials characterizations reveal that both microstructures and nanoscale asperities of the tribofilms contribute to the robust superhydrophobic features of sanded surfaces.

Keywords: sand method; superhydrophobic surfaces; surface; robust superhydrophobic

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.