LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AIEgen Intercalated Nanoclay-Based Photodynamic/Chemodynamic Theranostic Platform for Ultra-Efficient Bacterial Eradication and Fast Wound Healing.

Photo by amandavickcreative from unsplash

With the emergence and global spread of bacterial resistance, pathogenic bacterial infections have become a serious threat to human health. Thus, therapeutic strategies with highly antibacterial efficacy and a low… Click to show full abstract

With the emergence and global spread of bacterial resistance, pathogenic bacterial infections have become a serious threat to human health. Thus, therapeutic strategies with highly antibacterial efficacy and a low tendency to induce drug resistance are strongly desired to combat bacterial infections. Here, an ultra-efficient photodynamic/chemodynamic theranostics platform is developed by intercalating an aggregation-induced emission (AIE) photosensitizer, TPCI, into the nanolayers of iron-bearing montmorillonite (MMT). The formed TPCI/MMT composite can not only perform efficient photodynamic therapy (PDT) through a burst generation of singlet oxygen (1O2) upon white light illumination but also continuously implement chemodynamic therapy (CDT) by converting endogenous hydrogen peroxide into highly toxic hydroxyl radicals (•OH) due to iron release. In addition, the fluorescence of TPCI/MMT can be activated due to the AIE feature of TPCI, which helps guide the location of the antimicrobials. The combination of such powerful bombs (PDT) and unremitting ambushes (CDT) in TPCI/MMT can synergistically and effectively eliminate bacteria and promote faster wound healing in vivo with good biocompatibility and low side effects. The smart and simple design of TPCI/MMT provides a representative paradigm for achieving efficient antimicrobials to combat the coming resistance crisis.

Keywords: platform; wound healing; tpci mmt; photodynamic chemodynamic; ultra efficient

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.