LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Assembled Oligopeptide (FK)4 as a Chiral Alignment Medium for the Anisotropic NMR Analysis of Organic Compounds.

Photo from wikipedia

Anisotropic NMR parameters have been proven to be powerful for the structural elucidation of organic molecules. Herein, we present an alignment medium based on the self-assembled (FK)4 oligopeptide, showing excellent… Click to show full abstract

Anisotropic NMR parameters have been proven to be powerful for the structural elucidation of organic molecules. Herein, we present an alignment medium based on the self-assembled (FK)4 oligopeptide, showing excellent properties in measurements of anisotropic NMR parameters in both D2O and CD3OD. The preparation of the (FK)4-based alignment medium is simple and rapid. The low viscosity of the anisotropic phase makes it easy to be transferred to the NMR tube. The alignment of the oligopeptide is fast, stable, and homogeneous, with weak background signals, permitting the acquirement of high-quality NMR spectra. The performance of this alignment medium in residual dipolar coupling measurements and diastereomer discriminations is demonstrated by analyzing several different analytes. The enantiodiscrimination property of the (FK)4 oligopeptide is revealed by the difference of residual chemical shift anisotropy of the two enantiomers in the 1D 13C spectrum, granting its potential use for the quantification and identification of enantiomers of small molecules.

Keywords: medium; self assembled; alignment medium; anisotropic nmr

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.