LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Temporally Arrested Breath Figure

Photo from wikipedia

Since its original conception as a tool for manufacturing porous materials, the breath figure method (BF) and its variations have been frequently used for the fabrication of numerous micro- and… Click to show full abstract

Since its original conception as a tool for manufacturing porous materials, the breath figure method (BF) and its variations have been frequently used for the fabrication of numerous micro- and nanopatterned functional surfaces. In classical BF, reliable design of the final pattern has been hindered by the dual role of solvent evaporation to initiate/control the dropwise condensation and induce polymerization, alongside the complex effects of local humidity and temperature influence. Herein, we provide a deterministic method for reliable control of BF pore diameters over a wide range of length scales and environmental conditions. To this end, we employ an adapted methodology that decouples cooling from polymerization by using a combination of initiative cooling and quasi-instantaneous UV curing to deliberately arrest the desired BF patterns in time. Through in situ real-time optical microscopy analysis of the condensation kinetics, we demonstrate that an analytically predictable self-similar regime is the predominant arrangement from early to late times O(10–100 s), when high-density condensation nucleation is initially achieved on the polymer films. In this regime, the temporal growth of condensation droplets follows a unified power law of D ∝ t. Identification and quantitative characterization of the scale-invariant self-similar BF regime allow fabrication of programmed pore size, ranging from hundreds of nanometers to tens of micrometers, at high surface coverage of around 40%. Finally, we show that temporal arresting of BF patterns can be further extended for selective surface patterning and/or pore size modulation by spatially masking the UV curing illumination source. Our findings bridge the gap between fundamental knowledge of dropwise condensation and applied breath figure patterning techniques, thus enabling mechanistic design and fabrication of porous materials and interfaces.

Keywords: condensation; fabrication; breath figure; temporally arrested; arrested breath; figure

Journal Title: ACS Applied Materials & Interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.