LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Voltage Redox Mediator of an Organic Electrolyte for Supercapacitors by Lewis Base Electrocatalysis.

Photo from wikipedia

Redox electrolytes for supercapacitors (SCs) have recently sparked widespread interest. Due to the redox reactions within electrolytes, they can achieve high capacitance and long cycle stability. However, the energy density… Click to show full abstract

Redox electrolytes for supercapacitors (SCs) have recently sparked widespread interest. Due to the redox reactions within electrolytes, they can achieve high capacitance and long cycle stability. However, the energy density of SCs with redox electrolytes is limited by the narrow applied electrochemical window due to the irreversible side reaction of redox mediators at high potential. To overcome this issue, a redox mediator with a high redox potential, tetrachloridehydroquinone (TCHQ), is added to organic electrolytes to obtain a broad electrochemical window. TCHQ is designed to undergo a dehydrogenation reaction catalyzed by N-doped activated carbon to provide capacitance. The pyrrole N atoms have the highest electrocatalytic activity based on the theoretical calculation of reaction overpotential with predicted reaction pathways due to their Lewis basicity. Benefitting from that, TCHQ shows promising reversibility with a larger electrochemical window (up to 2.7 V). As a result, a higher energy density is obtained when compared to commercial SCs. This study proposes a strategy for designing redox mediators and interfaces of SCs with high energy density and a calculation method of dehydrogenation reaction electrocatalysis.

Keywords: reaction; redox; redox mediator; electrocatalysis; energy density

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.