LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of the Channel Thickness on the Photoresponse of Black Arsenic Mid-Infrared Photodetectors.

Photo by frostroomhead from unsplash

Recently explored black arsenic is a layered two-dimensional low-symmetry semiconducting material that, owing to its inherent narrow bandgap (∼0.31 eV) in its bulk form, is attractive for mid-infrared optoelectronics. Several… Click to show full abstract

Recently explored black arsenic is a layered two-dimensional low-symmetry semiconducting material that, owing to its inherent narrow bandgap (∼0.31 eV) in its bulk form, is attractive for mid-infrared optoelectronics. Several studies have been conducted on its structural, charge-transport, and thermal properties for implementation in nanoelectronics. Herein, the thickness-dependent optoelectronic performance of black arsenic devices for mid-infrared wavelengths (2.0-4.0 μm) is investigated. The device was fabricated over an hBN/SiO2/Si substrate using mechanical exfoliation of black arsenic. It is observed that the optoelectronic properties of the devices vary significantly with the thickness of the black arsenic channel of the devices. A peak photoresponsivity of 244 A/W was achieved at 3.00 μm for a 60 nm-thick black arsenic channel. However, the maximum detectivity of 6.14 × 109 Jones was found for a lower thickness (∼25 nm) of black arsenic, along with an excellent (i.e., the least) noise-equivalent power of ∼89 fW/Hz1/2. Our findings reveal that the optoelectronic properties of black arsenic are excellent and can be tuned through thickness control. The promising results suggest the considerable potential of black arsenic in future opto- and nanoelectronic devices.

Keywords: mid infrared; thickness photoresponse; black arsenic; channel thickness; impact channel

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.