LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Surface Interactions on Microsphere Loading in Dissolving Microneedle Patches

Photo from wikipedia

Microneedle (MN) patches enable simple self-administration of drugs via the skin. In this study, we sought to deliver drug-loaded microspheres (MSs) using MN patches and found that the poly(lactic-co-glycolic acid)… Click to show full abstract

Microneedle (MN) patches enable simple self-administration of drugs via the skin. In this study, we sought to deliver drug-loaded microspheres (MSs) using MN patches and found that the poly(lactic-co-glycolic acid) (PLGA) MSs failed to localize in the MN tips during fabrication, thereby decreasing their delivered dose and delivery efficiency into skin. We determined that surface interactions between the hydrophobic MSs and the poly(dimethylsiloxane) (PDMS) mold caused MSs to adhere to the mold surface during casting in aqueous formulations, with hydrophobic interactions largely responsible for adhesion. Further studies with polystyrene MSs that similarly carry a negative charge like the PLGA MSs demonstrated both repulsive electrostatic interactions as well as adhesive hydrophobic interactions. Reducing hydrophobic interactions by addition of a surfactant or modifying mold surface properties increased MS loading into MN tips and delivery into porcine skin ex vivo by 3-fold. We conclude that surface interactions affect the loading of hydrophobic MSs into MN patches during aqueous fabrication procedures and that their modulation with the surfactant can increase loading and delivery efficiency.

Keywords: surface interactions; surface; microneedle patches; hydrophobic interactions; effect surface; mss

Journal Title: ACS Applied Materials & Interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.