LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioinspired Stretchable Fiber-Based Sensor toward Intelligent Human-Machine Interactions.

Photo from wikipedia

Wearable integrated sensing devices with flexible electronic elements exhibit enormous potential in human-machine interfaces (HMI), but they have limitations such as complex structures, poor waterproofness, and electromagnetic interference. Herein, inspired… Click to show full abstract

Wearable integrated sensing devices with flexible electronic elements exhibit enormous potential in human-machine interfaces (HMI), but they have limitations such as complex structures, poor waterproofness, and electromagnetic interference. Herein, inspired by the profile of Lindernia nummularifolia (LN), a bionic stretchable optical strain (BSOS) sensor composed of an LN-shaped optical fiber incorporated with a stretchable substrate is developed for intelligent HMI. Such a sensor enables large strain and bending angle measurements with temperature self-compensation by the intensity difference of two fiber Bragg gratings' (FBGs') center wavelength. Such configurations enable an excellent tensile strain range of up to 80%, moreover, leading to ultrasensitivity, durability (≥20,000 cycles), and waterproofness. The sensor is also capable of measuring different human activities and achieving HMI control, including immersive virtual reality, robot remote interactive control, and personal hands-free communication. Combined with the machine learning technique, gesture classification can be achieved using muscle activity signals captured from the BSOS sensor, which can be employed to obtain the motion intention of the prosthetic. These merits effectively indicate its potential as a solution for medical care HMI and show promise in smart medical and rehabilitation medicine.

Keywords: human machine; bioinspired stretchable; machine; sensor; stretchable fiber

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.