LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanoscale TiO2 Coatings Improve the Stability of an Earth-Abundant Cobalt Oxide Catalyst during Acidic Water Oxidation.

Photo from wikipedia

The large-scale deployment of proton-exchange membrane water electrolyzers for high-throughput sustainable hydrogen production requires transition from precious noble metal anode electrocatalysts to low-cost earth-abundant materials. However, such materials are commonly… Click to show full abstract

The large-scale deployment of proton-exchange membrane water electrolyzers for high-throughput sustainable hydrogen production requires transition from precious noble metal anode electrocatalysts to low-cost earth-abundant materials. However, such materials are commonly insufficiently stable and/or catalytically inactive at low pH, and positive potentials required to maintain high rates of the anodic oxygen evolution reaction (OER). To address this, we explore the effects of a dielectric nanoscale-thin layer, constituted of amorphous TiO2, on the stability and electrocatalytic activity of nanostructured OER anodes based on low-cost Co3O4. We demonstrate a direct correlation between the OER performance and the thickness of the atomic layer deposited TiO2 layers. An optimal TiO2 layer thickness of 4.4 nm enhances the anode lifetime by a factor of ca. 3, achieving 80 h of continuous electrolysis at pH near zero, while preserving high OER catalytic activity of the bare Co3O4 surface. Thinner and thicker TiO2 layers decrease the stability and activity, respectively. This is attributed to the pitting of the TiO2 layer at the optimal thickness, which allows for access to the catalytically active Co3O4 surface while stabilizing it against corrosion. These insights provide directions for the engineering of active and stable composite earth-abundant materials for acidic water splitting for high-throughput hydrogen production.

Keywords: earth abundant; water; tio2; stability; acidic water

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.