LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanotrains of DNA Copper Nanoclusters That Triggered a Cascade Fenton-Like Reaction and Glutathione Depletion to Doubly Enhance Chemodynamic Therapy.

Photo by chrisbair from unsplash

Many current chemodynamic therapy (CDT) strategies suffer from either low therapeutic efficiency or the deficiency of poor targeting. The low therapeutic efficiency is mainly ascribed to the intracellular antioxidant system… Click to show full abstract

Many current chemodynamic therapy (CDT) strategies suffer from either low therapeutic efficiency or the deficiency of poor targeting. The low therapeutic efficiency is mainly ascribed to the intracellular antioxidant system and the inefficient Fenton reaction in the weakly acidic tumor microenvironment (TME). Herein, by exploitation of the diverse function and programmability of functional nucleic acid, aptamer-tethered nanotrains of DNA copper nanoclusters (aptNTDNA-CuNCs) were assembled to simultaneously achieve targeted recognition, loading, and delivery of CDT reagents into tumor cells without an external carrier. The intracellular hydrogen peroxide (H2O2) oxidized nanotrains of DNA-CuNCs to produce a lot of Cu2+ and Cu+ ions, which can generate reactive oxygen species (ROS) in the weakly acidic TME based on the pH-independent Fenton-like reaction of Cu+/H2O2. Meanwhile, the redox reaction between intracellular glutathione (GSH) and Cu2+ depleted GSH and generated Cu+ ions, which weakened the antioxidant ability of cancer cells and further enhanced the Fenton-like reaction of Cu+/H2O2, respectively. Thus, the cascade Fenton-like reaction and GSH depletion doubly improved the efficacy of CDT. The in vivo and in vitro study solidly confirmed that aptNTDNA-CuNCs have excellent antitumor efficacy and no cytotoxicity to healthy cells. Therefore, aptNTDNA-CuNCs can act as CDT reagents to achieve highly efficient, biocompatible, and targeted CDT.

Keywords: fenton; reaction; fenton like; like reaction; cdt; nanotrains dna

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.