LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accelerating the Low-Temperature Catalytic Oxidation of Acetone over Al-Substituted Mn-Al Oxides by Rate-Limiting Step Modulation.

Photo from wikipedia

In order to enhance the catalytic activity and improve the stability of Mn-Al oxides in acetone oxidation, it is interesting to have found that modulating and accelerating the rate-limiting step… Click to show full abstract

In order to enhance the catalytic activity and improve the stability of Mn-Al oxides in acetone oxidation, it is interesting to have found that modulating and accelerating the rate-limiting step by Al substitution rather than just mixing of Mn and Al is crucial for hydrocarbon efficient catalytic destruction. Here, a series of Mn-Al oxides with different Al substitution ratios were prepared by a scalable and facile hydrothermal-redox strategy. The reaction rate, selectivity, and stability of the representative α-MnO2 catalyst in acetone oxidation can be remarkably promoted by simple replacing of the partial framework Mn with Al, which changes the rate-limiting step from acetic acid dissociation to ethanol decomposition accelerated by H2O molecules. Among them, MnAl0.5 displays the best catalytic performance with 90% of acetone converted at just 165 °C and a remarkable CO2 yield. DFT results suggest that the py and px orbitals of the O element take part in the formation of the carbonyl group when the intermediate of removing H* from ethanol reacts with the hydroxyl group of H2O. The dxz orbital of Mn with p-electron of Al plays a vital role in the rate-limiting step. The work provides new insights into engineering catalysts for industrial VOC efficient and economical mineralization.

Keywords: limiting step; oxidation; rate limiting; acetone; rate

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.