LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Promoting the Efficiency and Stability of Nonfullerene Organic Photovoltaics by Incorporating Open-Cage [60]Fullerenes in the Nonfullerene Nanocrystallites.

Photo from wikipedia

The device efficiency of PM6:Y6-based nonfullerene organic solar cells is fast advanced recently. To maintain organic solar cells (OSCs) with high power conversion efficiency over 16% in long-term operation, however,… Click to show full abstract

The device efficiency of PM6:Y6-based nonfullerene organic solar cells is fast advanced recently. To maintain organic solar cells (OSCs) with high power conversion efficiency over 16% in long-term operation, however, remains a challenge. Here, a novel non-volatile additive, an open-cage [60]fullerene (8OC60Me), is incorporated into PM6:Y6-based OSCs for high-performance with high durability. With optimized addition of 1.0 wt % 8OC60Me, the PCE value of PM6:Y6/8OC60Me OSCs can be promoted to 16.5% from 15.0%. Most strikingly, such a high PCE performance can maintain nearly 100% for over 500 h at room temperature; at an elevated operation temperature of 80 °C, the PCE can be stabilized above 15.0% after 45 h of operation. Grazing incidence small- and wide- angle X-ray scattering studies reveal improved orientation and crystallinity of Y6 in a fractal-like network structure of PM6 in PM6:Y6/8OC60Me films under in situ annealing, parallel to the enhanced electron mobility. Analysis of charge distributions lines up possible van der Waals interaction between the thienyl/carbonyl moiety of 8OC60Me and difluorophenyl-based FIC-end groups of Y6. This result is of great contrast to those devices with the best-selling PC61BM as the additives─8OC60Me might be of interest to be incorporated into future Y6-based OSCs for concomitantly improved PCE and excellent stability.

Keywords: pm6; stability; efficiency; open cage; nonfullerene organic

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.